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This paper deals with theoretical treatments for the deformation mechanism of liquid crystal rods by light 
scattering under H, polarization condition, when the rods oriented by a shear flow are acted on by a 
rectangular electric pulse along the direction of the velocity gradient of flow. As in one example, the 
calculations were carried out to check whether the complicated orientational behaviour of superstructures 
such as rods and/or spherulites cause significant effect on the profile of H, light scattering patterns. In the 
present system, the orientation distribution function of rods was obtained as the solution of the rotational 
diffusion equation for rotational ellipsoidal particles. In actual calculations for light scattering patterns, the 
orientational fluctuation with respect to the rod axis is considered to explain the circular type pattern under 
no external excitation which has been reported in previous experiments. When the orientation functions 
provide curves showing two peaks by the proper choice of parameters concerning electric field strength and 
velocity gradient, the corresponding H, light scattering pattern showed four small dull lobes in the vertical 
direction indicating the preferential orientation of rods with respect to the shear flow direction in addition to 
the four sharp large lobes in the horizontal direction indicating the preferential orientation of rods with 
respect to the electric field direction. This indicates that the H, light scattering pattern influences the two 
kinds of orientation of rods. Copyright 0 1996 Elsevier Science Ltd. 

(Keywords: liquid crystal rods; light scattering; H, polarization condition; shear flow; rectangular electric pulse) 

INTRODUCTION 

Small angle light scattering under polarization condition 
has been developed to study morphology of hetero- 
geneous superstructures. The scattering patterns which 
have been most frequently found in the crystalline and 
liquid crystalline polymers are those from spherulitic’ 
and rod-like textures . The origin of the scattering has 
been shown to be mainly described by the analysis for H, 
and V, polarization conditions in terms of optically 
anisotropic spheres, or rods, since the patterns from both 
the superstructures are quite different to each other. The 
H, scattering depends upon anisotropy of structures, 
while I’, scattering also depends upon density fluctua- 
tion, i.e. polarizabilities of the heterogeneous texture and 
of the surrounding medium. The I’, pattern is less 
distinct in comparison with the H, pattern, reflecting the 

* To whom correspondence should be addressed 

contribution to the density fluctuation. The typical light 
scattering from the heterogeneous system has been 
developed and is one of the most convenient and 
effective methods for studying the morphology because 
of the very short irradiation time of incident beam to a 
specimen usually less than 1 &s. Even so, however, light 
scattering patterns contain a more complicated factor 
concerning optical anisotropy in comparison with small 
angle X-ray scattering depending on only the electron 
density fluctuation. This indicates that the Fourier 
transfer of scattered intensity to obtain information on 
heterogeneous substances in a real space is meaningless. 

Accordingly, theoretical calculations have been car- 
ried out to give the best fit between numerical and 
experimental results by selecting suitable values of the 
parameters associated with orientational fluctuation of 
optical axes and optical anisotropy. This method has 
played an important role in analysing the morphology of 
oriented and unoriented heterogeneous systems. The 
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theories for oriented polymer films by elongation have 
been formulated by using simple orientation distribution 
such as affine fashion6’7. For lyotropic liquid crystals, the 
orientation distribution of heterogeneous rods has been 
given as a function of time and applied electric field8, 
since birefringent phase sometimes show rodlike and/or 
spherulitical textures under optical micrographs 
(crossed-polarized) and H, polarization condition9-14. 

The theory of the liquid crystal system was based on 
electro-optical properties of rigid molecules such as 
polypeptides which can form liquid crystals in concen- 
trated solutions as the molecular assembly. The investi- 
gation was developed in accordance with the concept 
that the electric anisotropy of a rigid molecule in a dilute 
solution causes the interaction energy of the molecule 
with the applied field to depend upon the an 

f! 
le between 

the molecular axis and the applied field’59’ O’konski 
et al. studied electrical and optical parameters from the 
saturation of the electric birefringence in a solution’6. 
The saturation behaviour was computed for various 
ratios of permanent to induced moment contributions to 
the birefringence. The electrical parameters and the 
optical anisotropy factor of the molecules were sepa- 
rately determined by fitting the experimental birefrin- 
gence saturation results to a theoretical curve. Since then, 
this treatment was extended to a disc-shaped particle by 
Shah’7”8 and to the more general molecular model by 
Holcomb and Tinoco”. As a further development based 
on the above concept, the orientation distribution 
function of macromolecule clusters was derived by the 
diffusion equation by Benoit2’ and Matsumoto et LzI.~‘, 
in which the molecular axes are assumed to orient 
parallel to the molecular cluster axis (rod axis). By using 
this method, the time-dependence of the light scattering 
pattern was analysed when a rectangular pulse and a 
reversing pulse were applied to the nematic liquid 
crystalline solution by Matsuo et ~1.~~. 

This paper is focused on the further theoretical 
analysis of scattered intensity from anisotropic liquid 
crystal rods with complicated orientational behaviour, 
since rodlike structures as an aggregation of rigid 
polymer chains were observed in the birefringent phase 
under optical microgra 

zp 
hs (crossed-polarized) and H, 

polarization condition’ -14. As an example, the calcula- 
tions were also carried out for time-dependence of the 
change in light scattering patterns when a rectangular 
pulse of an electric field strength was applied to nematic 
liquid crystal rods which had been oriented in the steady 
state flow direction perpendicular to the electric field. 
This system is much more complicated than the previous 
one with a random orientation of rods before the applied 
electric field. The rotational diffusion equation for 
rotational ellipsoidal particles in solution was approxi- 
mately solved by one of the co-authors, Matsumoto22, 
when the solute particles oriented by a shear flow were 
acted on by a rectangular and reversing electric pulse 
along the direction of the velocity gradient of flow. The 
angular distribution was obtained up to the fourth order 
for an electric field and/or hydrodynamic field and was 
applied to electric birefringence and extinction angle. As 
a further complicated application, H, scattering patterns 
were calculated by assuming that the angular distribu- 
tion obtained by the rotational diffusion equation is 
equal to that of the rod axis. 

As discussed before, Fourier transfer of scattered 

intensity from heterogeneous substances is meaningless, 
since the scattered intensity depends on the complex 
relationship between an effective induced dipole moment 
of the scattering element depending upon the rotation of 
substances and phase retardation. Thus, any effective 
information from scattered intensity cannot be deduced 
without the comparison between observed pattern and 
the theoretical one calculated by using a proper model. 
The numerical results will probably offer useful informa- 
tion for the analysis of complicated orientation of rods 
exhibiting patterns with eight lobes23124. Accordingly, the 
theoretical analysis for complicated systems, such as the 
simultaneously flow and electric orientation of rods, is of 
interest in understanding the application limit of the 
polarized light scattering technique to investigate com- 
plicated heterogeneous polymeric systems. 

RESULTS AND DISCUSSION 

It is well-known that molecules in liquid crystals orient 
parallel in the preferred direction2s. This is usually one of 
the characteristics of liquid crystals in the case that the 
distance between two plate surfaces of the cell is thin and 
the concentration of solution is high25. The two factors 
depend on the types of chemical structure. According to 
our experimental results, however, it was confirmed that 
in addition to low molecular liquid crystals such as 
aqueous sodium dibutyl phosphate26, the preferential 
orientation of rigid polymer chains can also be avoided 
by selecting two factors, concentration of solutions and 
thickness of a cell. Namely, the orientation of liquid 
crystal molecules in the preferred direction without 
applied external excitation could be avoided for poly(y- 
bengyl-L-glutamate) (PBLG) in a chloroform system, the 
concentration being 11~01% and the thickness being 
200pm. Thus, the following calculation will be carried 
out for the above system. 

Figure 1 shows the schematic diagram which is 
necessary to calculate H, scattered intensity from the 
rod of length L and infinitesimally thin diameter. The 
incident beam whose propagation direction is denoted by 
a unit vector so is detected as a function of 8, the 

E 

Figure 1 Schematic diagram showing the coordinate system of light 
scattering from the three-dimensional assembly of anisotropic rod 
under laminar flow and electric field 
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scattering angle, and ,u, the azimuthal angle taken from 
the vertical direction OX, corresponding to an electric 
field direction. Before applying an electric field, the rod is 
oriented in the Xi direction by the shear flow having a 
velocity vector u. Angles (Y and R are the polar and 
azimuthal angles of the rod with respect to Cartesian 
coordinate O-X,&X, and angle n specifies the rotation 
angle of the rod around the vector r along the rod axis. 

According to the Rayleigh-Gans theory25, the ampli- 
tude A of the scattering from the rod may be given by 

s L/2 
A=C _L,2(M. 0) exp{k(r+)W (1) 

where C is a constant, and s is the scattering vector 
defined by ss - s’, and k is given by 2r/X’, where X’ is the 
wavelength of light in the medium. The vector M is the 
dipole moment of the scattering element at r from the 
centre of the rod. The vector 0 is a unit vector along the 
polarization direction of the analyser set in between the 
specimen and the detector registering the scattering. 

When an electric field is applied to the solution with 
steady-state flow, the scattered intensity Z from a rod at 
time t may be given by 

r2n r2ll IT 

C F(a, !d, t)AA* sin Q da: dR dn 

z = (2) 

F(a, R, t) sin (Y da dR dv 

where F(cY, 0, t) is an orientation distribution function 
of a rod. In the absence of an electric field, F(o, fl, t) 
depends on the orientation of the rod immersed in a 
shear flow and is independent oft. A* denotes a complex 
conjugate of A. 

As shown in Figure 1, the orientation of optical axes 
with respect to the rod axis is dependent upon the 
position within a rod. This concept is introduced to 
explain a circular type pattern of H, scattering from the 
PBLG-chloroform system under no external excitation. 
If the orientation of the optical axis of the scattering 
element w fluctuates with r from their average value wo, w 
is a function of r similar to w(r) = w. + A(r), where A(r) 
is the local fluctuation of w. In this viewpoint, the angles 
wi at rl and w2 at r2 may be given by w1 = w. + A, and 
w2=wg+A2, respectively. When the difference 
between orientation fluctuation Ai at rl and A2 at r2 is 
given by the quantity Ai2, and defined by Ai2 = 
A2 - Ai = w2 - wi, the angle characterizing the relative 
orientation of the optical axes of two scattering elements 
is separated by the distance, r12 = rl - r2. The quality 
Ai2 has been related to the correlation function f(r12) 
where 

f(ri2) = (cos 2A& (3) 

The correlation function which, in general, decreases 
asymptotically from unity to zero with increasing 
distance lr12) from zero, is assumed to be given by the 
empirical function 

the fluctuating system, as discussed by Stein and Chu for 
the undeformed spherulite28. Obviously, the equation 
interrelating this parameter derived by Stein and Chu, 
can be used for the orientation fluctuation in a rod. This 
method was first employed by Hashimoto et LzI.~* and the 
same procedure was used in the previous papers”-14. In 
these studies, (cos 2A1),, and (cos2 2A1),, are given by 

(~0s W),v = (L,c)2 2 [L/c - 1 + exp(-l/c)] (5) 

1 
(cos2 2A1),, = - - 

1 

2 16(,5/~)~ 

x [l - 4(L/c) - exp(-4l/c)] (6) 

Equation (4) reduces to zero as c approaches zero and 
to unity as c becomes large. On the other hand, equation 
(6) approaches l/2 as c approaches zero, corresponding 
to completely random fluctuation. The quality 
approaches unity as c becomes large, corresponding to 
the absence of internal disorder. Incidentally, the effect 
of the orientational fluctuation must be introduced to the 
experimental results that the H, pattern shows circular- 
type in the absence of the external applied field13. 

Based on the above concept, equation (2) can be 
rewritten as 

r27T PT rL 

ZH, = c J JJ 0 0 0 
F(a, fi, t)(L - rd(Q)q 

x cos Br12 sin crdri2da dR 

F(a, 0, t) sinadadR (7) 

where 

B = 47rlX’sir-i: sin;sinacosR - cosi 

and 

8 
x sinpsinasinR - cos-cos~cosa 

2 (8) 

(Q), = 4 { Qi sin2 a cos2 (Y sin2 a+ 4Q2 (cos2 a cos2 0 

+ sin2 0) + Q3 sin2 (Y cos2 02) (9) 

(Q), means the average by integrating over angles, r], and 
Qi (i = l-3) . q t m e ua ion (9) may be given in the forms 

Q, = {4(2cos22wo - 1)(2(cos22A1),, - 1) 

+ i ( (cos2 2A1),, cos2 2wo + (sin2 2Al),, sin2 2wo) 

+ jcos ~WO(COS 2Al)avlf(r12) 

+ $cos2 wo(cos 2A1),, + $ 

Q2 = - 1 {(2(cos2 2A1),, - 1)(2cos2 2wo - 1) 

- lY(rl2) 

(10) 

(11) 

f(r12) = ew(-Ih2Ilc) (4) 
Q3 = $ [{(2(cos2 2A1),, - 1)(2cos2 2wo - 1) 

where c is the correlation distance. This method was first 
proposed in connection with the problem of an 
undeformed spherulite by Stein and Chu28. The para- 
meter is expected to be related for a particular model of 

- 2~0s 2wo(cos2 Al)av + l}f(ri2) 

- 2cos2wo(cos2A1),, +2] (12) 

The function F(a, 0, t) was determined to satisfy the 
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condition where a rectangular phase of an electric field 
strength is applied to nematic liquid crystalline rods 
which had been oriented in a shear flow direction 
perpendicular to an applied electric field. The function 
F(a, 0, t) has been determined to represent orientation 
of rigid macromolecular chains by one of the co-authors, 
Matsumoto22. Here, if we assume that the assembly of 
the rigid chains form a liquid crystal rod, the optical axes 
are, on average, parallel to the rod axis. Hence the 
average value w. in equations (lo)-( 12) can be fixed to be 
zero. This assumption is rigorous on the viewpoints of 
the profile of the H, pattern and characteristics of 
nematic liquid crystals 13. The function F(a, R, t) of the 
rod must be satisfied by the same diffusion equation 
given in a previous paper’. 

8F 
- = 0 v2 F - div(Fw) 
dt (13) 

In equation (13), F is an abbreviation of F(a, R, f) 
which is the angular distribution function of an axially 
symmetric particle with a rotational diffusion coefficient 
0 given by kT/E, where k is the Boltzmann constant, T is 
the absolute temperature, and < is the rotational 
frictional coefficient. w is a velocity angular vector 
under the action of an external field. Of course, it is a 
question to employ the simple rotational diffusion 
equation which is not evident in nematics where the 
complicated elastic and viscous properties have to be 
taken into account. However, at present, the introduc- 
tion of viscoelastic properties into a diffusion equation is 
extremely difficult in estimating the change in H, pattern 
from liquid crystalline rods immersed in shear flow under 
the action of an electric rectangular pulse. Thus, 
equation (13) was employed as a crude approximation 
to represent the orientational behaviour of rods. 

According to Demetriades3’, the angular velocity w is 
expressed as the sum of the angular velocity WH, caused 
by a hydrodynamic force, and the angular velocity WE, 
caused by an electric force, if the inertia term in the 
equation of motion is negligible. As discussed by 
Jeffery3’, the angular velocity WH is classified into two 
components 

wna = $ GR sin 2a sin 2s1 

WHR = ;G(l + Rcos2R) (14) 

where G is the velocity gradient of flow and R is given by 
(9 - 1)/(9 + l), where P is the axial ratio. 

On the other hand, the angular velocity wE is also 
classified into two components 

W,+ = ;{~‘EcosCNosfl 

+(g,, -g,2)E2sinacoscl:cos2R} 

sin R 
WER = p/E=+ (g,, -g,,)E’sinRcosR (15) 

where CL’ is the apparent permanent dipole moment in 
solution and gel and ge2 are the electric polarizabilities 
along the symmetry and transverse axes, respectively. E 
is the electric field strength. 

Returning to Figure 1, the solution containing 
ellipsoidal particles is flowing in the X2 direction and 
the velocity u is expressed as u = (0, G, 0), where G 

means a constant velocity gradient. When a constant 
electric field E is suddenly applied to the X3 direction, E 
is expressed as E = (0, 0, E). Setting the angles QI and R 
within Cartesian coordinate O-X, X2X3, equation (13) 
can be formulated as 

where 

Here it should be noted that the angular distribution 
function can be expanded into the function series made 
by the product between power series S and E and a 
spherical harmonic as 

F((~Y, 9, t) = )i: r xx K~E”#‘fl(u) cosmR 
m P n 

(18) 
where p;“(u) is the associated Legendre function of the 
Ith order and mth degree. After substituting equation 
(18) into equation (16), we can obtain recurrence 
relations of KE by setting each coefficient of the 
powers of 6 and E as equal to zero, using the property 
of the orthogonal function. Furthermore, the coefficients 
Kz in the build-up process could be calculated by the 
recurrence relation on the basis of the initial condition in 
which the solute particles have been arranged under the 
stationary shear flow before applying an electric field. 
Actually the coefficients up to the fourth order with 
respect to 6 and E could be determined using the 
computer software REDUCE. Thus, the final result for 
the orientation distribution function F(a, R, t) may be 
given by 

F = K;;P; + SK;; P; cos R 

5772 POLYMER Volume 37 Number 26 1996 



Behaviour of liquid crystalline rods: M. Matsuo et al. 

+ S2{ (K:;fl + K;;ti + K:,#) 

+ (K;;p: + K:;Z’$ cos R} + . . .] 

+ E2[K;;e + S(K;,+: + K;:P:)cosfl 

+ (K;;l+ + K;‘;‘ti + K$&) cos 20) + .] 

+ E3 [(K$‘: + K::P;) 

+6(K;,+; +K~:~:+K~~:~:)cosR+...] 

+ E4[(K;;Pi + K$l’: + . . .) + . . .] + . . . (19) 

where KE are the expansion coefficients and most terms 
contain Ot. 

The actual calculations were performed up to the 
fourth order perturbation. The coefficients KE are 
described in the Appendix. Unfortunately some coeffi- 
cients, @i, Kt;, K&, Kii, Kzi, Ki:, K::, and K$ could 
not be determined. The terminal error contains the 
serious unfavourable possibility that F(cx, a, t), takes 
the negative region against angular parts. The exact 
description up to the higher order coefficients of equation 
(19) is important in calculating the birefringence and the 
extinction angle of an axially symmetric macromolecule 
both with a permanent dipole moment and with an 
induced dipole moment. The exact formulation causes a 
much more significant effect on the calculated profiles of 
small angle light scattering patterns, since the scattered 
intensity distribution is given by integrating complicated 
termF(a, 0, t)(Q), cos Brl2 in equation (7) over a three- 
dimensional space. To check this problem, numerical 
calculations of P(cr, R, t) were carried out by changing 
the values of given parameters. 

Due to w. = 0, we can employ the same values of b and 
a in equation (17) which has been measured for poly(y- 
benzyl-L-benzyl-L-glutamate) in chloroform, the concen- 
tration being about 11~01% 13. The values b and a in 
equation (17) were chosen to be 2.27 x 1O-2 and 
5.66 x 10-6, respectively. To justify the values, we shall 
briefly refer to the experimental procedure. These values 
were determined as two parameters p(= bE) and 
y(= aE2) in a molecular orientation distribution func- 
tion, according to the theory of the steady-state electric 
birefringence. In doing so, the second order orientation 
factor (a(/$ y) was determined as An/n,, based on the E- 
dependence of birefringence An, in which n, is the 
steady-state birefringence at infinite field strength. On 
the other hand, the factor tD4@ y) at various field 
strengths with units of V2 cm- was obtained as the 
second order moments of the molecular orientation 
function proposed by Holcomb and Tinoco”. By using 
the same method proposed by O’konski et a1.16, the 
theoretical result could be fitted to the experimental one 
by the proper choice of the relation between p and y (see 
Figures 7 and 8 in ref. 13) and consequently, as discussed 
above, the coefficients b = (P’E) and a = (r/E2) could 
be determined as 2.27 x lo- and 5.16 x 10-6, respec- 
tively, in which the units of p and y are determined 
experimentally as V cm-’ and V2 cme2, respectively. The 
coefficients b and a become zero dimensional order, if E 
is given by Vcm-’ as discussed in the previous paper13. 

Figure 2 shows the orientation distribution function 

(F(cY, t))n under a shear flow in the absence of applied 
electric field (E = 0 V cm-‘) and the corresponding H, 
scattering patterns. The bracket ( )n means the numerical 
integration of equation (19) over the angle 0. The 
parameter S in equation (16) indicates the strength of 
shear flow. At S = 0, indicating the absence of a shear 
flow, the rods show a random orientation, while at S = 4, 
the function shows a maximum density at Q = 90”, 
indicating the preferential orientation of rods with 
respect to the X2 axis by a shear flow. 

The patterns show X-type at 6 = 0, indicating an 
almost random orientation of rods and the lobes become 
duller with increasing L/c, i.e., with increasing orienta- 
tional disorder of the optical axes with respect to the rod 
axis. Hence, the scattered intensity exhibits an X-type 
pattern showing a clear p-dependence when the optical 
axes are oriented perfectly with respect to the rod axis. 
By contrast, when the rods (the optical axes being 
oriented with large orientational fluctuation with respect 
to the rod axis), are oriented randomly, the scattered 
intensity tends to be independent of p, so that the 
scattering pattern becomes circular13. The lobes are 
extended in the meridional direction at 6 = 4, indicating 
the preferential orientation of rods with respect to the X2 
axis by the shear flow. 

Figure 3 shows the orientation function (F(cx, t))n of 
rods when the electric field is applied to the X, axis. The 
numerical calculations at S = 0.0001 and Or = 2 were 

E=O, @t=O 
Ir 1 

c I I 

Oo" 45" 90" 
I I 

135" 180" 
a 

” 

0 

(a) 8=0 (b) %=4 

Figure 2 Orientational distribution function of (F(N, c))[~ at 6 = 0 
and 4 in the absence of an electric field and the corresponding H, light 
scattering patterns 
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carried out for three kinds of expansions of (F(o, t))o 
in a series of E [see equation (19)]; (i) the bracket [ ] of E3 
(the third order) and that of E4 (the fourth order) terms 
are zero, (ii) the bracket of E3 term is not zero but that of 
I? is zero, and (iii) the brackets of E3 and ,!? terms are 
not zero. At E = 50Vcm-i, all the functions (F(a, t))o 
calculated by the three cases exhibit similar profile and 
take positive values over the whole angle of a. At 
E = 100VcmP1, the function of (F(cY, t))o takes positive 
value over the whole angle of (Y in case (i), while the 
functions calculated by cases (ii) and (iii) tend to be 
negative as cr becomes wider. The function calculated by 
using case (i) tends to increase gradually at Q > 90”, 
which is different from the tendency at E = 50 V cm-‘. 
Judging from the profiles at E = SOVcm-‘, this small 
duller increase is probably attributed to a periodic noise 

I --__ 

-2’ 
0" 45” 90” 135” 180’ 

o! 

Figure 3 Orientational distribution function of (F(a, t))n at 6 = 
0.0001 and 8t = 2 at electric fields of E = 50, 100 and 150Vcm-‘, 
calculated by three cases; (i) E3 = 0 and i? = 0, (ii) E3 = 0 and I? # 0, 
and (iii) E3 # 0 and I? # 0 

leading to terminal error of a series of expansion of the 
function. Similar periodic noise was also observed for 
case (iii). On the other hand, the function calculated by 
using case (ii) shows a rather simple decreasing curve 
similar to the profiles of the curves calculated at 
E = 50Vcm-‘, although it takes negative values at 
cy > 140”. At E = 150 Vcm-‘, all the functions calcu- 
lated by the three cases show considerable periodic noise 
having negative part. As described before the increase in 
periodic noise is attributed to the terminal error due to 
the difficulty in determining the fourth moment coeffi- 
cients. Judging from the curve profiles, the following 
calculations were carried out using case (ii) at 
E = lOOVcm_‘, since the change in H, light scattering 
patterns calculated at lower electric field strength such as 
E = 50Vcm-’ . IS not so effective to the change in 
parameters 6 and Or. 

To support the justification of numerical calculations 
by case (ii), based on another background, the numerical 
calculations of transient electric birefringence were 
carried out for three cases (i), (ii), and (iii), using a 
matrix with nine components, as 

n?i & & 
n2 = ni, & nZ3 

n:’ n& 43 

Accordingly, the birefringence A is given by32 

(20) 

A+ & [(n:, - n?‘)2+(2n~‘)2]“2 (21) 

where n corresponds to (nrt + n3,)/2 and the compo- 
nents n33, nll, and n31 are represented by using the 
angular distribution function F(a, 0, t) as 

43 = 4 + 47G ge2 + h - 52) 
{ 

271 71 

X 
ss 

cos2 Q: F(cY, R, t) sin a da dR (22) 
0 0 

2x R 

X .[.I sin2 a 1 + cm 20 

0 0 2 

x F(a, R, t) sinodadR 
1 

(23) 
and 

2s T 

nt’ = 4K,(g,’ - ge2) o JI’ o cos LY sin a 

x F(a, 0, t) cos R sin (Y da dR (24) 

where C, is the volume concentration. In actual 
calculation, it may be assumed that the molecular 
chains are perfectly oriented parallel to the rod axis. 

To check the increasing behaviour of A with Ot, the 
birefringence A is normalized as 

‘ct) = A 
A - &o 

<--tx - AE=O 
(25) 

where AEZo is the initial birefringence at E = 0 and 
A f_clj is the birefringence at the steady-state after 
applying the electric field. The terms -AEFo in a 
numerator and a denominator of equation (25) are 
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6 

t 

,/---.\ - E=fO, E4=0 
,’ ‘\ 

I ‘\ ----- EssO, E’&O 
8’ %\ 

,’ ‘\. 

t ’ 
:‘E=l50 .\ 

z4 ; 
‘\ \ \ 

F ‘\ 
: ‘. 
: ‘\ 

Ot 

Figure 4 Normalized electric birefringence Y(t) against et, calculated 
by cases (ii) and (iii) at the indicated value of E 

introduced to eliminate birefringence by a shear flow 
effect. Therefore, it is evident that the value of normal- 
ized birefringence, Y(t), increases monotonically with 
increasing Ot and becomes unity at Ot + co. 

Figure 4 shows the results calculated as a function of E 
in cases (ii) and (iii). At a fixed value of Ot, the value 
calculated by case (ii) was confirmed to be slightly larger 
with increasing E. The difference, however, is very small 
and all the calculated values are almost independent of 
E. Thus the behaviour is represented as a thin solid 
curve. This tendency is obviously rigorous, since Y(t) at 
each value of E is independent of a shear flow effect. 

In contrast, the dotted curves calculated by using case 
(iii) show different profiles except the curves at 
E = 50 V cm-‘. All curves show increasing behaviour 
at earlier time scale and they tend to decrease beyond 
their maximum value. Among them, the curves at 
E = 180 and 200 V cm-’ show negative value and tend 
to increase again. Anyway, the behaviour showing 
overshoot is in contradiction to the monotonical rise 
birefringence, since a shear flow effect is eliminated in 
equation (25). Thus the monotonical rise curves support 
the calculation of H, patterns by using case (ii) at 
E = 100 V cm-i. Incidentally, the good agreement 
between cases (ii) and (iii) at E = 50 V cm-’ is probably 
thought to be due to the fact that the terminal error of 
the coefficients associated with E3 and l? does not 
provide any serious effect on the orientation distribution 
function F(a, R, t). 

Figure 5 shows the orientation function of (F(a, t))n 
in an instantaneous state (et = 0) of an applied electric 
field of 100 V cm-’ at 6 = 4 and the corresponding H, 
patterns given as a function of L/c. The orientation 
function has two maximum peaks at a: = 0” (180”) and 
90”. The higher peak at (Y = 0” (180”) is related to the 
applied electric field and lower peak at (Y = 90”, 
indicating the shear flow as observed in Figure 2. The 
lobes showing clear p-dependence in the H, pattern are 
extended in the horizontal direction at wider scattering 
angle, reflecting the large peak of (F(a, t))n at Q = 0”. 
Close observation reveals that in addition to the four 
lobes discussed above, there exist another small four 
lobes at L/c = 0.01 extended in the vertical direction 
reflecting the small peak of (F(a, t))n at cx = 90”. The 
appearance of the small lobes becomes clearer with 
increasing L/c and at L/c = 1, the small four lobes are 

E=lOO,@t=O,B=4 
I 

I I 
Oo" 45O 90" 

I I 
135" 180' 

a 

Figure 5 Orientational distribution function of (F(q t))n at 6 = 4 
and 8f = 0 in the absence of an electric field and the corresponding H, 
light scattering patterns at L/c = 0.01 and 1 

amalgamated into two lobes along the vertical direction. 
Incidentally, the patterns with eight lobes have already 
been observed for H, scattering from drawn nylon 6 
films. However, we have had no idea of how to pursue 
mathematical analysis because of the difficulty in 
obtaining a suitable orientation distribution function to 
represent complicated orientation behaviour of rods with 
the nylon 6 under uniaxial stretching23>24. Judging from 
the two patterns in Figure 5, it is found that even in 
uniaxial elongation, the orientation behaviour of rods 
with the drawn nylon 6 film deviates from the uniaxial 
mode. 

Figure 6 shows H, scattering patterns at L/c = 0.01 
and 1 with increasing Ot, when the parameters E and 6 
are fixed to be 100 and 0.0001, respectively. The lobes are 
extended in the vertical direction in the absence of 
applied field, because of the steady-state flow in the X2 
direction in Figure I. With increasing time, the lobes are 
extended in the horizontal direction, reflecting the 
applied electric field in the X3 direction. The function 
to calculate the H, patterns at Ot = 2 corresponds to the 
dotted curve by case (ii) in Figure 3. Fortunately, the 
small negative part of the function at cr > 140” shown in 
Figure 3b did not influence unfavourable effects on the 
calculated patterns. 

Here it should be noted that the H, patterns show 
normal profile which has been calculated by using 
the function with the symmetrical relationship 
(F(a, t))n = (F(n - a, t))n, although the function used 
for the calculation of H, patterns does not satisfy the 
above relationship but only satisfies the relationship 
@‘(a, t))n = P’(27r - a, t))o. Such an abnormal pheno- 
menon is due to the fact that equation (19) means the 
orientation function of one end (head) of the rod and 
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E=lOO, 8=0.000l 

L/C=O.OI 

(a) @It=0 (b) @t=l (cl Ot=2 (d) @t-5 
Figure 6 Change of H, light scattering patterns with increasing Ot, calculated at b = 0.0001 and E = 100 V cm-’ 

inevitably the function becomes lowest at = 180”, while 
the calculated patterns cannot recognize both ends (head 
and tail) of a rod, consistent with the results observed by 
optical instrument. This indicates that in the calculation 
process of H, light scattering patterns, the terms 
containing p;“(x)(1 : odd) become zero by integrating 
over a three-dimensional space and the calculated 
patterns show rigorous profile in good agreement with 
those observed. Thus, it is unnecessary to consider 
the symmetry of the orientation function obtained as a 
series expansion of polar and azimuthal angles on 
calculating light scattering patterns under polarization 
condition. 

To study the advantage of polarized light scattering in 
estimating orientational behaviour of rods and of optical 
axes in comparison with other optical quantities, the 
second and fourth order orientation factors have been 
proposed33.34. That is, if molecular chains are oriented 
parallel to the rod axis without the orientational 
fluctuation, the orientation factors of molecular chains 
for the present system can be defined by 

s 211 

F,,,, = (p;” (cos a) cos mn) = 
0 

x cos mR sin Q dcr dR 
s kc 02, wT(cos~) 
0 

(26) 
where 1 and m are integers and f(ol, R, t) is the 
normalized function of F(Q, R, t) given‘by 

f(cY, 0, t) = 2a F(n7 02, t, ss li 

F(a, 0, t) sinffdadfl 
0 0 

(27) 

The electric birefringence given in equation (21) contains 
the information of the second-order orientation factors, 
Fzo, F2,, and Fz2. Generally, for industrial materials such 
as calender films and inflation films taking biaxial 
orientation, the orientation factors, Fzo and FZ2 can 
be evaluated by birefringence and dye dichroism 
measurements33 and Fbo, Fd2, and Fd4 can be evaluated 
by fluorescence polarization dichroism34. Of course, for 
crystalline polymer, the higher order factors Flm (I: even 
and m: even) beyond 6 can be estimated from crystal 
orientation distribution function obtained by X-ray 
diffraction35. However, the factors F1, (I: even and 
m: odd or even) become zero because of orthogonal 
biaxial symmetry of the orientation distribution 
function for most of the industrial products such as 
f(*cosa, &rn) =f(fcoso, 7rZtfl). 

Figure 7 shows change in the orientation factor FZO 
with increasing Ot and Figure 8 shows all the factors up 
to the fourth order except Flo. The calculations were 
carried out at S = 0.0001 and E = 100 V cm-‘. 8’20 
characterizes the orientation distribution of molecular 
chains with variation between - l/2 and 1. For random 
orientation, Fzo is zero, while for complete orientation 
parallel and perpendicular to the X3 axis in Figure I, Fzo 
are 1 and -l/2, respectively. Before applying the 
rectangular electric pulse, Fzo takes negative values 
indicating the preferential orientation perpendicular to 
the X3 axis because of the influence of shear flow, but 
tends to increase indicating the preferential orientation 
to the X3 axis by the influence of the electric field. The 
value tends to level off with further increase in Ot beyond 
3. It is seen that the other factors shown in Figure 8 are 
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Figure 7 The second order orientation factor Fzs against Ot, 
calculated at 6 = 0.0001 and E = 100 V cm-’ 

0.107 

b 0.08 

2 
LL 
E 

0.06 
.- 
6 
E 
.g 0.04 
b 

01 

Figure 8 The first, second, third, and fourth order orientation factors 
Fz, , Fz2, Far Fdl, Fd2, Fa3, and Fu using the same values of 6 and E used 
in Figure 7 

less effective for change of molecular orientation rather 
than F2s. This means that electric birefringence is 
strongly affected by F2e and is hardly affected by Fzl 
and F12. 

Here it should be noted that the birefringence gives the 
second order orientation factors, and these factors 
cannot represent the detailed orientation behaviour of 
molecules. Thus, nobody can infer the complicated 
orientation function shown in Figure 5 from the 
second-order orientation factors. Namely, it is evident 
that the same values of the factors can be realized easily 
from another monotonous curve. Nevertheless, the 
orientation of rigid molecules under an electric field 
and/or a shear flow have been estimated mainly by 
birefringence measurements15-22. For polarized light 
scattering, the scattered intensity is related to the 
orientation distribution functions of rods in terms of 
high order moments and the profile of scattering pattern 
reflects the complicated orientation of rods sensitively as 
shown in the patterns in Figure 5. Accordingly, small 
angle light scattering has an advantage in studying the 
detailed orientation behaviour of superstructures such as 
spherulitic and rod-like textures in comparison with 
birefringence. 

CONCLUSION 

The theoretical analysis of light scattering patterns was 

Behaviour of liquid crystalline rods: M. Matsuo et al. 

carried out when an electric field was applied to the 
liquid crystal rods immersed in shear flow in order to 
study the change of pattern in complicated oriented 
systems. The orientation distribution function of the rod 
axis was assured to be equal to the rotational diffusion 
equation for rotational ellipsoidal particles in solution. 
The equation was approximately solved when the solute 
particles oriented by a shear flow were acted on by a 
rectangular electric pulse along the direction of the 
velocity gradient of flow. In actual calculation of H, 
scattering patterns, the orientation of optical axes with 
respect to the rod axis was assumed to be dependent 
upon the position within a rod. 

The H, patterns exhibited scattering lobes extended in 
the meridional direction indicating the preferential 
orientation in the shear flow direction in the absence of 
applied electric field. When a rectangular pulse was 
applied to the direction perpendicular to the shear flow 
the scattering pattern at the initial stage showed eight 
lobes, in which the four lobes in the horizontal direction 
show clear p-dependence but the four remaining small 
lobes in the vertical direction were unclear. The former 
lobes were associated with the preferential orientation of 
rods in the direction of an applied electric field and the 
latter, in the direction of a shear flow. With increasing 
time, the four scattering lobes simply tend to be extended 
in the horizontal direction. This indicates that polarized 
light scattering reflect the complicated orientational 
behaviour of rods sensitively, in comparison with 
birefringence reflecting only the second order moment 
of the distribution function22. 
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APPENDIX 

The coefficients in equation (19) which did not appear in 
the previous paper are described as 

1 I@& ---R= 
47r ‘O 

e; = k&R= 

~jf = &&R~(&R- 1) 

Kt; = 1 1-R2(gR + 1) 4r 25200 

1 
Kz:= -G&R3 

K03 = ’ 1 R3 
63 aT 332640 

+&R-i)+ (&,R2+&-;)Ot 

+ $ (AR2 - 1)e2t2} exp(-20t) 

- & R2 exp(- 120t)] 

K:: = &~R[$(&R+ 1) -&{;(g~+l) 

+ (3 R + l)@t} exp(-20t) 

+&{&($R-29)+(&R-l)@} 

x exp(-120t)] 

+ (+R+ l)@t}exp( -20t) 

-${$#,R+l) 

+(iR+l)@t}exp(-20t)] 

K,f = -&b{ 1 - exp(-20t)) 

K;: = $b{(jR+ 1) - {(;R+ 1) 

+ 2(: R + l)@t} exp ( - 20t) 

Ki:= &hbR{l-iexp(-20r)-iexp(-120r)} 

K$= -&&bR2{1 -$exp( -20t) 

- &exp ( - 120t) - hexp ( - 300t)) 

Kl; = & &bR’{ 1 - gexp ( - 20t) - &exp(-120t) 

-$exp( -300t)) 

K;; = ;b[{ &,R3( -;e3t3 +$e2t2 +@t+&&) 

-&R2(3e3t3 +;02t2 +$&et+%) 

+&R(;e3t3 +;e2t2 +$Ot+;) 

+&(~@3t3+~02t2+~Ot+~)}exp(-20t) 

- {$R”(&Ot-&) 

+&R2(110t+$$ )} exp ( - 120t) 

-$(&R3 +Z& R’+&R+$)] 

K:: = &&R{(b’+2a) -gb2exp(-20t) 

+ 5 (b2 - 4~) exp(-tier) - $ b* exp ( - 120t) 

+ $ (b2 - %a) exp ( - 200t)) 

K;; = &(bZ(#R+5) +4a(5R+ 1)) 

+yb2{;($&R2+&R- 1) 

-($~~+g~+l)@t}exp(-20t) 

-2{;b2(ER2+yR-7)+2+&R= 

+$R+ 1) +$b2(&R2--R-7)& 

+ 12a($$R2+$R+ 1)0t 

-9(3R+ l)(tR+ l)(b2 -4a)02t2}exp(-60t) 

+gb’R{$(&R- 1) 

- (iR+ l)@t}exp (- 120t) 

-&R2($b2-48a)exp( -200t)] 

Kfi = &kb(b’-4a){l -i(l +40t)exp(-20t) 

- iexp ( - 60t)) 

K$ = & &b{ (b2 + 6~2) - $ (3b2 + 8~) exp(-20t) 

+ i (b2 - 4~2) exp(-60t) 

- i (b2 - 14~) exp(-120t)) 
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K;; = -&[{ &,b2R(21e2t2 +&%t+E) 

+$l2(7&2+Ijl?Ot+$!) 

- &aR(3&2 +got + 3) - +l(02t2 - $)} 

x exp(-20t) + { &b2R(Ot - $) + &b2(@t + f) 

- &jaR(Ot - fi ) - &a(& + $)} exp(-60t) 

-&.(&b2R- llaR)exp(-120t) 

- $ (#R + $2 - $7R)] 

POLYMER Volume 37 Number 26 1996 5779 


